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Why is it important to develop better models for marshes?

They serve as a natural protective barrier for storm surge
and Sea Level Rise (SLR). Can they keep up with SLR?

Places like Bombay Hook are already seeing substantial loss of
wetlands

Up to 2/3 of all Polychlorinated Biphenyls (PCBs) released in
DE reside in the marshes. How does SLR affect the
distribution of these contaminants?

Marshes/wetlands make up almost 50% of the Delaware Bay
coastline of Delaware, with more wetland area landward of
many sandy beaches in the bay

Delaware wetlands are home to a large variety of aquatic
species and waterfowl



Implications of Sea Level Rise
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Field Study Site — 25km —>

Brockonbridge Marsh

About 2 km SE of
Bowers Beach, DE

One main dead-end
channel with several
secondary channels
branching off; empties
into Delaware Bay
Roughly 20 m wide and
2.5 m deep at mouth,
narrowing further inland

Connection to Murderkill
River via small channel,
only during spring tides
Protected by higher
elevation sand dunes at
bay

Site selected due to its
fairly good accessibility
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Deployment Configuration
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Surface Elevation Measurements
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Surface Elevation Measurements

Before Storm
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Velocity Profiles at Channel Mouth
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Depth Avg & Smoothed Velocity Signals
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Dlscharge Moving Boat Method

e Traversed the channel 3 times (5
hours total) essentially from high
tide to low tide

* Goal was to use these data,
combined with bottom-mounted
ADCP data at mouth, to get a
better picture of the cross-
channel variation to compute
discharge

* Limited by the nature of marshes
and the difficulty of site access;
public use of the inlet; and the
fact that the mouth is only
crossable by foot during low tide
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Discharge — Moving Boat Method
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Surveying Brockonbridge Gut Bathymetry

2 surveys, July and August 2013
Aguadopp (10 cm blanking)
Sonar (30 cm blanking)

SONAR —s ¢
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Survey Tracks July

@ July 2013
® August 2013 ~

Left: example of
July vs August
tracks
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hannel Bathymetry
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Interpolating Survey Points onto a DEM
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Used inverse distance squared
interpolation method, with a
threshold max radius of 2 meters
Interpolated onto a DEM from
Elevation, NAVD88 LIDAR set flown by USGS in 2008
. e at low tide
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Adjusting Grid for Bias and Noise

» Vegetation inhibits LIDAR'’s ability to ping off the marsh surface, introduces local biases

* High-resolution DEM necessary for resolving as many secondary & tertiary channels as
possible, important for flow routing

« Moving window averaging technique creates smoother surface, while maintaining
resolution of smaller channels; increases model computation speed
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Verifying Adjustment for Bias

« Bias determined by comparing LIDAR points to known control
survey points around the marsh. Global bias of -0.05 m and
vegetation bias of 0.15 m was determined (T. McKenna, DGS)

« \We can also compare results to a high resolution DEM constructed
from > 26,700 data points (Pieterse, Puleo and McKenna)
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NearCoM — Nearshore Community Model

- SWAN (wave model)

- SHORECIRC (nearshore circulation model)

- Quasi 3-D (2D horizontal w/ effect of vertical structure of horizontal
flows)

- Hybrid TVD finite-volume and finite-difference scheme

- Solves conservative forms of the fully Nonlinear Shallow Water
Equations

- Sediment Model

- Fully parallelized with MPI

- 14 day simulations can be completed in ~1.5 - 2 days w/ 800 processors

19



CTICT TOEAPPIEU LOdstal RESEArLil | UMIVET SILy O LEiadvvalt

Boundary
.
Condition
0.6
0.4
Color: elevation, NAVD-88 (m 3
R A 2 =
0
- R
1800 - 1.8 02
-0.4—
1600 1.6
— 3/‘21 3/‘22 3/‘23 3/‘24 3/‘25 3/‘26 3/‘27 3/‘28 3/‘29 3/‘30 3/‘31 4}1 4‘/2 4‘/3
~— 1400 1.4
E
=
. , |
> 1200 : \ 7 - 1.2 2000 L . ! . ! : :
2 g
]
N -
E 1000 "} : - . 1990 -
D : |
o & ' ||
£ 800y : | s 1980 =
5 ¥ F B
% 1970
2 600 0.6
1960
400 0.4
A ) y 1950
200 ' . - 0.2
1940
0+ : - 0
0 200 400 600 800 1680 _ | _ .
Rel Easting, UTM Zone-18N (m) 870 880 890 200 910 920 930 940 950 20




r CTICT TOEAPPIEU LOdstal RESEArLil | UMIVET SILy O LEiadvvalt

Physics & Wetting/Drying

- Currently, all model runs have been conducted with constant
friction (Manning number) across the entire domain, and no wind

stress applied

- A minimum depth value is supplied for wetting/drying, which
treats all cells with water depth below this value as dry

- Typically, min depth should be O(1) smaller than the average wave
height

Parameter values used for results that follow:
- Manning = 0.02
- Min Depth = 0.01 m
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Marsh Flooding
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Model vs Field — n(t)
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Closer look at Site F
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*Only for first 4 days of data, before the storm
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Conclusions

The combination of large spatial and temporal scales, coupled
with the necessity but limited availability of high resolution grids,
makes modeling these systems very challenging

These large scales play important roles in marshes, which raises
guestions about model efficiency and stability in long time
simulations

Processes at sub-grid scales are likely very important for routing
the flow in marsh environments like Brockonbridge Marsh

Additionally, the data during the storm, as well as the post-Sandy
aerial photo, showed it can take the marsh several days to
recover from high wind surge events

Inclusion of variable friction, as well as wind forcing, will hopefully
provide more insight into how much of a role these factors play in
marshes, especially during wind-driven surge events
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