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This section describes the specific data sets 
and methods used to assess projected changes 
in Delaware climate in response to human-
induced global change. These data sets, models, 
and methods include future scenarios, global 
climate models, long-term station records, and a 
statistical downscaling model. The methods and 
the assessment framework used here are consistent 
with—and, in general, represent updated versions 
of—those used in the 2007 Northeast Climate 
Impact Assessment,1 the 2009 Second U.S. 
National Climate Assessment2  and the upcoming 
2013 Third U.S. National Climate Assessment.3 
(Note: For definitions of key terms, see Chapter 4.)

A.1. Historical and Future 
Climate Scenarios
The scenarios used in this analysis were the 
RCP 8.5 (higher) and 4.5 (lower) concentration 
pathways and SRES A1fi (higher) and B1 
(lower) emission scenarios. These scenarios 
were chosen because they cover a broad range of 
plausible futures in terms of human emissions 
of carbon dioxide (CO2) and other radiatively 
active species and resulting impacts on climate. 
Results shown in this report are based on the 
newer RCP scenarios only. Plots of results from 
both RCP and SRES scenarios are provided in 
the Excel files included with this Appendix.

In historical climate model simulations, climate 
in each year is affected by external forcings or 
climate drivers (including atmospheric levels of 
greenhouse gases, solar radiation, and volcanic 
eruptions) consistent with observed values for 
that year. The historical forcings used by the global 

climate model (GCM) simulations in this project 
are the Coupled Model Intercomparison Project’s 
“20th Century Climate in Coupled Models” 
or 20C3M total forcing scenarios.4, 5 These 
simulations provide the closest approximation to 
actual climate forcing from the beginning of the 
historical simulation to the year 2000 for older 
CMIP3 simulations, and the year 2005 for newer 
CMIP5 simulations. Where multiple 20C3M 
simulations were available, the first was used here 
(“run 1” for CMIP3 and “r1i1p1” for CMIP5) 
unless complete daily outputs were not available 
for that simulation, in which case the next 
available was used.

The historical simulation provides the starting 
conditions for future simulations. To ensure 
the accuracy of the inputs used in the historical 
scenarios, it is customary in the climate modeling 
community for historical simulations to end 
at least 5 years before present. So although 
the CMIP3 GCM simulations were typically 
conducted after 2005, the CMIP3 historical total-
forcing scenario ends and “future” scenarios begin 
in 2000. CMIP5 historical scenarios end in 2005 
and “future” scenarios begin in 2006. In the future 
scenarios, most external natural climate drivers are 
fixed, and human emissions correspond to a range 
of plausible pathways rather than observed values.

Future scenarios depend on a myriad of factors, 
including how human societies and economies 
will develop over the coming decades; what 
technological advances are expected; which energy 
sources will be used in the future to generate 
electricity, power transportation, and serve 
industry; and how all these choices will affect 
future emissions from human activities.
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To address these questions, in 2000 the 
Intergovernmental Panel on Climate Change 
(IPCC) developed a series of scenarios described 
in the Special Report on Emissions Scenarios 
(SRES).6 These scenarios describe internally 
consistent pathways of future societal development 
and corresponding emissions. The carbon 
emissions and global temperature change that 
result from the SRES scenarios are shown in 
Figure 1 (left). 

At the higher end of the range, the SRES higher-
emissions or fossil fuel–intensive scenario (A1FI 
or A1fi, for fossil-intensive) represents a world with 
fossil fuel–intensive economic growth and a global 
population that peaks mid-century and then 
declines. New and more efficient technologies 
are introduced toward the end of the century. In 
this scenario, atmospheric CO2 concentrations 
reach 940 parts per million by 2100, more than 
triple preindustrial levels of 280 ppm. At the lower 
end, the SRES lower-emissions scenario (B1) also 
represents a world with high economic growth 
and a global population that peaks mid-century 
and then declines. However, this scenario includes 
a shift to less fossil fuel–intensive industries and 
the introduction of clean and resource-efficient 
technologies. Emissions of greenhouse gases 
peak around mid-century and then decline. 
Atmospheric CO2 levels reach 550 parts per 
million by 2100, about double preindustrial levels. 

Associated temperature changes by end of century 
range from 4 to 9oF, based on the best estimate of 
climate sensitivity.

For this project, climate projections were based 
on the A1FI higher (dark red) and B1 (blue) 
lower scenarios. Because of the decision of IPCC 
Working Group 1 to focus on the A2, A1B, and 
B1 scenarios, only four GCMs had A1FI scenarios 
available. For other models, daily outputs were 
not available for all scenarios. Table 1, in the next 
section on Global Climate Models, summarizes 
the combinations of GCM simulations and 
emission scenarios used in this work.

In 2010, the IPCC released a new set of scenarios, 
called Representative Concentration Pathways 
(RCPs).7 In contrast to the SRES scenarios, 
the RCPs are expressed in terms of CO2 
concentrations in the atmosphere, rather than 
direct emissions. The RCP scenarios are named in 
terms of their change in radiative forcing (in watts 
per meter squared) by end of century: +8.5 W/m2 
and +4.5 W/m2. 

RCP scenarios can be converted “backwards,” 
into the range of emissions consistent with a given 
concentration trajectory, using a carbon cycle 
model (Figure 1, center). Four RCP scenarios 
were developed to span a plausible range of future 
CO2 concentrations, from lower to higher. At the 

Figure 1. There are two families of future scenarios: the 2000 Special Report on Emission Scenarios (SRES, left) and the 
2010 Representative Concentration Pathways (RCP, center). This figure compares 2000 SRES (left), 2010 RCP (center), 
and observed historical annual carbon emissions (right) in gigatons of carbon (GtC). At the top end of the range, the 
SRES and RCP scenarios are very similar. At the bottom end of the range, the RCP 2.6 scenario is much lower, because 
it includes the option of using policies to reduce CO2 emissions, while SRES scenarios do not.

SRES (2000) RCP (2010) ACTUAL
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higher end of the range, atmospheric CO2 levels 
under the RCP 8.5 scenario reach more than 900 
parts per million by 2100. At the lowest, under 
RCP 2.6, policy actions to reduce CO2 emissions 
below zero before the end of the century (i.e., to 
the point where humans are responsible for a 
net uptake of CO2 from the atmosphere) keep 
atmospheric CO2 levels below 450 parts per 
million by 2100. Associated temperature changes 
by end-of-century range from 2 to 8oF, based on 
the best estimate of climate sensitivity. 

In this Assessment, climate projections were 
developed for the RCP 8.5 higher (dark red) and 
4.5 lower (blue) scenarios, because these closely 
match the SRES A1fi and B1 scenarios. Although 
the CMIP5 archive contains simulations from 
more than 40 models, a much smaller subset (only 
16 individual models, from 13 modeling groups) 
archived daily temperature and precipitation for 
both the RCP 8.5 and 4.5 scenarios and even fewer 
of these models (9, total) represented updated 
versions of models already available in the CMIP3 
archive. The CMIP5 models used in this study are 
summarized in Table 1.

As diverse as they are, neither the SRES nor the 
RCP scenarios cover the entire range of possible 

futures. Since 2000, CO2 emissions have already 
been increasing at an average rate of 3% per year. If 
they continue at this rate, emissions will eventually 
outpace even the highest of the SRES and RCP 
scenarios (Figure 1, right).8,9  On the other hand, 
significant reductions in emissions—on the order 
of 80% by 2050, as already mandated by the state 
of California—could reduce CO2 levels below the 
lower B1 emission scenario within a few decades.10 
Nonetheless, the substantial difference between 
the higher and lower scenarios used here provides 
a good illustration of the potential range of climate 
changes that can be expected in the future, and 
how much these depend on future emissions and 
human choices.

A.2. Global  
Climate Models
To generate high-resolution daily projections 
of temperature and precipitation, this analysis 
used CMIP3 global climate model simulations 
from four different models, and CMIP5 
simulations from nine different models. Plots of 
projections for CMIP5 models are provided in 
the Excel files included with this Appendix.

Origin CMIP3 
model(s)

CMIP3 
scenarios

CMIP5 model(s) CMIP5 
scenario(s)

National Center for Atmospheric Research, USA CCSM3
PCM

A1FI, B1 
A1FI, B1

CCSM4 4.5, 8.5

Centre National de Recherches Meteorologiques, France CNRM-CM5 4.5, 8.5

Commonwealth Scientific and Industrial Research 
Organisation, Australia

CSIRO-MK3.6.0 4.5, 8.5

Geophysical Fluid Dynamics Laboratory, USA GFDL CM2.1 A1FI, B1 - -

Max Planck Institute for Meteorology, Germany MPI-ESM-LR, MR 4.5, 8.5

UK Meteorological Office Hadley Centre HadCM3+ A1FI, B1 HadGEM2-CC^+ 4.5, 8.5

Institute for Numerical Mathematics, Russian INMCM4 4.5, 8.5

Institut Pierre Simon Laplace, France IPSL-CM5A-LR 4.5, 8.5

Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute, and 
National Institute for Environmental Studies, Japan

MIROC5 4.5, 8.5

Meteorological Research Institute, Japan MRI-CGCM3 4.5, 8.5

Table 1. CMIP3 and CMIP5 global climate modeling groups and their models used in this analysis. Those marked 
with a (+) have only 360 days per year. All other models archived full daily time series from 1960 to 2099 (for CMIP3 
simulations) and 1950 to 2100 (for CMIP5 simulations).
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Future scenarios are used as input to GCMs, which 
are complex, three-dimensional coupled models 
that are continually evolving to incorporate the 
latest scientific understanding of the atmosphere, 
oceans, and earth’s surface. As output, GCMs 
produce geographic grid-based projections of 
temperature, precipitation, and other climate 
variables and daily and monthly scales. These 
physical models were originally known as 
atmosphere-ocean general circulation models 
(AO-GCMs). However, many of the newest 
generation of models are now more accurately 
described as global climate models (GCMs) as 
they incorporate additional aspects of the earth’s 
climate system beyond atmospheric and oceanic 
dynamics. 

Because of their complexity, GCMs are constantly 
being enhanced as scientific understanding of 
climate improves and as computational power 
increases. Some models are more successful than 
others at reproducing observed climate and 
trends over the past century.11 However, all future 
simulations agree that both global and regional 
temperatures will increase over the coming century 
in response to increasing emissions of greenhouse 
gases from human activities.12 

Historical GCM simulations are initialized in 
the late 1800s, externally “forced” by the human 
emissions, volcanic eruptions, and solar variations 
represented by the historical scenario described 
above. They are also allowed to develop their own 
pattern of natural chaotic variability over time. 
This means that, although the climatological 
means of historical simulations should correspond 
to observations at the continental to global scale, 
no temporal correspondence between model 
simulations and observations should be expected 
on a day-to-day or even year-to-year basis. For 
example, although a strong El Niño event occurred 
from 1997 to 1998 in the real world, it may not 
occur in a model simulation in that year. However, 
over several decades, the average number of 
simulated El Niño events should be similar to 
those observed. Similarly, although the central 
United States suffered the effects of an unusually 
intense heat wave during summer 1995, a model 
simulation for 1995 might show that year as 

average or even cooler than average. However, a 
similarly intense heat wave should be simulated 
some time during the climatological period 
centered around 1995. 

In this study, we used global climate model 
simulations archived by the Program for Climate 
Model Intercomparison and Diagnosis (PCMDI). 
The first collection of climate model simulations, 
assembled between 2005 and 2006, consists of 
models that contributed to phase 3 of the Coupled 
Model Intercomparison Project (CMIP3).13 These 
are the results presented in the 2007 IPCC Third 
and Fourth Assessment Reports (TAR and AR4).

The CMIP3 GCM simulations used in this 
analysis consist of all model outputs archived by 
PCMDI with daily maximum and minimum 
temperature and precipitation available for 
the SRES A1fi and B1 scenarios. Additional 
simulations were obtained from the archives of 
the Geophysical Fluid Dynamics Laboratory, the 
National Center for Atmospheric Research, and 
the U.K. Meteorological Office. The list of GCMs 
used, their origin, the scenarios available for each, 
and the time periods covered by their output are 
given in Table 1. 

From 2011 through the end of 2012, PCMDI 
began to collect and archive new GCM 
simulations that contributed to the fifth phase of 
CMIP and are used in the IPCC Fifth Assessment 
Report (AR5).14 The CMIP3 and CMIP5 archives 
are similar in that most of the same international 
modeling groups contributed to both. Both 
provide daily, monthly, and yearly output from 
climate model simulations driven by a wide range 
of future scenarios. However, the archives are also 
different from each other in three key ways. First, 
many of the CMIP5 models are new versions or 
updates of previous CMIP3 models and some 
of the CMIP5 models are entirely new. Some of 
the CMIP5 models are “Earth System Models” 
that include both traditional components of the 
CMIP3 Atmosphere-Ocean General Circulation 
Models as well as new components such as 
atmospheric chemistry or dynamic vegetation. 
Second, the CMIP5 simulations use the RCP 
scenarios as input for future simulations, while 
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the CMIP3 simulations use the SRES scenarios 
as input (Figure 1). Third, the CMIP5 archive 
contains many more output fields than the CMIP3 
archive did. 

The CMIP5 GCM simulations used in this project 
consist of nine sets of model outputs archived 
by the Earth System Grid with continuous 
daily maximum and minimum temperature and 
precipitation outputs available for historical and 
the RCP 8.5 future scenario and 14 available 
for historical and the RCP 4.5 future scenario. 
No additional simulations were obtained from 
individual modeling group archives. The full list 
of CMIP5 GCMs used, their origin, the scenarios 
available for each, and the time periods covered by 
their output are given in Table 1. 

The GCMs used in this study were chosen based 
on several criteria. First, only well established 
models were considered, those already extensively 
described and evaluated in the peer-reviewed 
scientific literature. Models must have been 
evaluated and shown to adequately reproduce 
key features of the atmosphere and ocean system. 
Second, the models had to include the greater 
part of the IPCC range of uncertainty in climate 
sensitivity (2 to 4.5oC).15 Climate sensitivity is 
defined as the temperature change resulting from 
a doubling of atmospheric CO2 concentrations 
relative to preindustrial times, after the atmosphere 
has had decades to adjust to the change. In other 
words, climate sensitivity determines the extent to 
which temperatures will rise under a given increase 
in atmospheric concentrations of greenhouse 
gases.16 The third and last criterion is that the 
models chosen must have continuous daily time 
series of temperature and precipitation archived 
for the scenarios used here (SRES A1FI and 
B1; RCP 8.5 and 4.5). The GCMs selected for 
this analysis are the only models that meet these 
criteria.

For some regions of the world (including the 
Arctic, but not the continental United States), 
there is some evidence that models better able to 
reproduce regional climate features may produce 
different future projections.17 Such characteristics 
include large-scale circulation features or feedback 

processes that can be resolved at the scale of a 
global model. However, it is not valid to evaluate 
a global model on its ability to reproduce local 
features, such as the bias in temperature over a 
given city or region. Such limitations are to be 
expected in any GCM, because they are primarily 
the result of a lack of spatial resolution rather 
than any inherent shortcoming in the physics of 
the model. Here, no attempt was made to select 
a subset of GCMs that performed better than 
others, because previous literature has showed that 
it is difficult, if not impossible, to identify such a 
subset for the continental United States.18,19

A.3. Statistical 
Downscaling Model
This project used the statistical Asynchronous 
Regional Regression Model (ARRM). It 
was selected because it can resolve the tails 
of the distribution of daily temperature and 
precipitation to a greater extent than the more 
commonly used Delta and BCSD methods, 
but is less time-intensive and therefore able to 
generate more outputs as compared to a high-
resolution regional climate model.

Global models cannot accurately capture the 
fine-scale changes experienced at the regional to 
local scale. GCM simulations require months of 
computing time, effectively limiting the typical 
grid cell sizes of the models to 1 or more degrees of 
latitude and longitude per side. And although the 
models are precise to this scale, they are actually 
skillful, or accurate, to an even coarser scale.20 

Dynamical and statistical downscaling represent 
two complementary ways to incorporate higher-
resolution information into GCM simulations to 
obtain local- to regional-scale climate projections. 
Dynamical downscaling, often referred to as 
regional climate modeling, uses a limited-area, 
high-resolution model to simulate physical 
climate processes at the regional scale, with grid 
cells typically ranging from 10 to 50 km per side. 
Statistical downscaling models capture historical 
relationships between large-scale weather features 
and local climate, and use these to translate 
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future projections down to the scale of any 
observations—here, both individual weather 
stations as well as a regular grid.

Statistical models are generally flexible and 
less computationally demanding than regional 
climate models, able to use a broad range of GCM 
inputs to simulate future changes in temperature 
and precipitation for a continuous period 
covering more than a century. Hence, statistical 
downscaling models are best suited for analyses 
that require a range of future projections that 
reflect the uncertainty in future scenarios and 
climate sensitivity, at the scale of observations that 
may already be used for planning purposes. If the 
study is more of a sensitivity analysis, where using 
one or two future simulations is not a limitation, 
or if it requires multiple surface and upper-air 
climate variables as input (and has a generous 
budget!), then regional climate modeling may be 
more appropriate.

In this project we used a relatively new statistical 
downscaling model, the Asynchronous Regional 
Regression Model, or ARRM.21 ARRM uses 
asynchronous quantile regression, originally 
developed by Koenker and Bassett,22 to estimate 
conditional quantiles of the response variable 
in econometrics. Dettinger et al.23 was the first 
to apply this statistical technique to climate 
projections to examine simulated hydrologic 

responses to climate variations and change, as well 
as to heat-related impacts on health.24 

ARRM expands on these original applications 
by adding (1) modifications specifically aimed at 
improving the ability of the model to simulate 
the shape of the distribution, including the tails, 
(2) piecewise rather than linear regression to 
accurately capture the often nonlinear relationship 
between modeled and observed quantiles, and (3) 
bias correction at the tails of the distribution. It is 
a flexible and computationally efficient statistical 
model that can downscale station-based or gridded 
daily values of any variable that can be transformed 
into an approximately symmetric distribution and 
for which a large-scale predictor exists. A quantile 
regression model is derived for each individual 
grid cell or weather station that transforms 
historical model simulations into a probability 
distribution that closely resembles historical 
observations (Figure 2a). This model can then be 
used to transform future model simulations into 
distributions similar to those observed (Figure 
2b). More information on the ARRM method 
is provided in the peer-reviewed journal article, 
“An asynchronous regional regression model for 
statistical downscaling of daily climate variables,” 
by Stoner et al. (2012).25

Both statistical and dynamical downscaling 
models are based on a number of assumptions, 

Figure 2. (a) Observed (black) and historical 
simulated distribution of daily maximum summer 
temperatures by three GCMs for a weather station 
in Chicago for evaluation period 1980-1999.

(b) Historical simulated (black) and future projected 
daily maximum summer temperature under the 
SRES A1FI higher (red) and B1 lower (orange) 
emission scenarios.
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some shared, some unique to each method. Two 
important shared assumptions are the following: 
first, that the inputs received from GCMs are 
reasonable—that is, that they adequately capture 
the large-scale circulation of the atmosphere and 
ocean at the skillful scale of the global model; 
and second, that the information from the GCM 
fully incorporates the climate change signal over 
that region. All statistical models are based on a 
crucial assumption often referred to as stationarity. 
Stationarity assumes that the relationship between 
large-scale weather systems and local climate will 
remain constant over time. This assumption may be 
valid for lesser amounts of change, but could lead 
to biases under larger amounts of climate change. 

In a separate project, we are currently evaluating 
the stationarity of three downscaling methods, 
including the ARRM method used here. 
Preliminary analyses show that the assumption 
of stationarity holds true over much of the world 
for the lower and middle parts of the distribution. 
The only location where ARRM performance is 
systematically non-stationary (i.e., relationships 
based on historical observations and simulations 
do not hold true in the future) is at extremely high 
temperatures (at and above the 99.9th quantile) 
along coastal areas, with warm biases up to 6oC. 
This may be due to the statistical model’s inability 
to capture dynamical changes in the strength of 
the land-sea breeze as the temperature differences 
between land and ocean are exacerbated under 
climate change; the origins of this feature are 
currently under investigation.

This bias has important implications for the climate 
projections generated for Delaware, because several 
of the station locations used in this study would 
be considered coastal. It suggests that estimated 
changes in days hotter than the 1-in-100 hottest 
historical day (e.g., the historical ~3 to 4 hottest 
days of the year) may be subject to temperature 
biases that increase in magnitude such that biases 
for the 1-in-1,000 hottest days (e.g., the hottest 
day in 3 years) may be as large as the projected 
changes in the temperature of those days by end 
of century under a higher emissions scenario. For 
precipitation, the ARRM method is characterized 
by a spatially variable bias at all quantiles that 

is generally not systematic, and varies from 
approximately -30 to +30%, depending on location.

A.4.	Station Observations
Long-term weather station records were 
obtained from the Global Historical 
Climatology Networka and supplemented with 
additional records from the National Climatic 
Data Center cooperative observer programb 
and the state climatologist for Delaware.27 All 
station data were quality-controlled to remove 
questionable data points before being used to 
train the statistical downscaling model. 

To train the downscaling model, the observed 
record must be of adequate length and quality. To 
appropriately sample from the range of natural 
climate variability at most of the station locations, 
and to produce robust results without overfitting, 
each station used in the analysis was required to 
have a minimum of 20 consecutive years of daily 
observations overlapping GCM outputs with less 
than 50% missing data after quality control. When 
these limits were applied, the number of usable 
stations for Delaware totaled 14 for maximum 
and minimum temperature and precipitation. 
The latitude, longitude, and station names of the 
weather stations for which downscaled projections 
were generated are provided in Table 2 and are 
plotted in Figure 3.

Although GHCN station data have already 
undergone a standardized quality control,28 
these stations were additionally filtered using 
a quality control algorithm to identify and 
remove erroneous values that had previously 
been identified in the GHCN database as well as 
elsewhere. The quality control process consists of 
two steps: first, individual quality control for each 
station; and second, a nearest-neighbor approach 
to validate outliers identified relative to the 
climatology of each month. 

a	 GHCN data is available online at:  http://www.ncdc.noaa.
gov/oa/climate/ghcn-daily/ 

b	 NCDC-COOP data is available online at: http://www.
ncdc.noaa.gov/land-based-station-data/cooperative-
observer-network-coop

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
http://www.ncdc.noaa.gov/land-based-station-data/cooperative-observer-network-coop
http://www.ncdc.noaa.gov/land-based-station-data/cooperative-observer-network-coop
http://www.ncdc.noaa.gov/land-based-station-data/cooperative-observer-network-coop
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Individual quality control identified and replaced 
with “N/A” any values that failed one or more of 
these three tests: 

1.	 Days when the daily reported minimum 
temperature exceeds the reported maximum. 

2.	 Temperature values above or below the highest 
recorded values for North America (-50 to 
70oC) or with precipitation below zero or above 
the highest recorded value for the continental 
United States (915 mm in 24 h). 

3.	 Repeated values of more than five consecutive 
days with identical temperature or nonzero 
precipitation values to the first decimal place.

In the second step of the quality control process, 
up to 10 “nearest neighbors” for each individual 
weather station were queried to see if the days 
with anomalously high and low values were also 
days in which anomalous values occurred at 
the neighboring station, plus or minus one day 
on either side to account for weather systems 
that may be moving through the area close to 
midnight. The resulting files were then scanned 
to identify any stations with less than 3,650 real 

Figure 3. This report generated future projections 
for 14 weather stations in Delaware with long-
term historical records. Weather stations that 
did not have sufficiently long and/or complete 
observational records to provide an adequate 
sampling of observed climate variability at their 
locations were eliminated from this analysis.

Station Name Latitude Longitude Beginning of Record GHCN ID

Bear 39.5917 -75.7325 Apr 2003 USC00071200

Bridgeville 38.75 -75.6167 Jan 1893 USC00071330

Dover 39.2583 -75.5167 Jan 1893 USC00072730

Georgetown 38.6333 -75.45 Sept 1946 USC00073570

Greenwood 38.8161 -75.5761 Jan 1986 USC00073595

Lewes 38.7756 -75.1389 Feb 1945 USC00075320

Middletown 39.45 -75.6667 Sept 1952 USC00075852

Milford 38.8983 -75.425 May 1893 USC00075915

Newark University Farm 39.6694 -75.7514 Apr 1894 USC00076410

Selbyville 38.4667 -75.2167 Jan 1954 USC00078269

Wilmington Porter 39.7739 -75.5414 Jan 1932 USC00079605

Dover AFB 39.1333 -75.4667 Jul 1946 USW00013707

Georgetown Sussex Airport 38.6892 -75.3592 Feb 1945 USW00013764

Wilmington New Castle Airport 39.6728 -75.6008 Jan 1948 USW00013781

Table 2. Latitude, longitude, and identification numbers for the 14 weather stations used in this analysis.
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values and less than 200 values for any given 
month. After the quality control and filtering 
process was complete, a total of 14 stations were 
available to be downscaled using the ARRM 
model described previously and the GCM inputs 
listed in Table 1. 

A.5. Uncertainty
The primary challenge in climate impact analyses 
is the reliability of future information. A common 
axiom warns that the only aspect of the future 
that can be predicted with any certainty is the fact 
that it is impossible to do so. However, although 
it is not possible to predict the future, it is possible 
to project it. Projections can describe what would 
be likely to occur under a set of consistent and 
clearly articulated assumptions. For climate change 
impacts, these assumptions should encompass 
a broad variety of the ways in which energy, 
population, development, and technology might 
change in the future. 

There is always some degree of uncertainty 
inherent to any future projections. To accurately 
interpret and apply future projections for 
planning purposes, it is essential to quantify 
both the magnitude of the uncertainty as well 
as the reasons for its existence. Each of the steps 
involved in generating projections—future 
scenarios, global modeling, and downscaling—
introduces a degree of uncertainty into future 
projections; how to address this uncertainty is the 
focus of this section.

Another well-used axiom states that all models 
are wrong (but some can be useful). The earth’s 
climate is a complex system. It is possible to 
simulate only those processes that have been 
observed and documented. Clearly, there are other 
feedbacks and forcing factors at work that have 
yet to be documented. Hence, it is a common 
tendency to assign most of the range in future 
projections to model, or scientific, uncertainty. 

Future projections will always be limited by 
scientific understanding of the system being 
predicted. However, there are other important 
sources of uncertainty that must be considered; 

some even outweigh model uncertainty for certain 
variables and timescales.

Uncertainty in climate change at the global 
to regional scale arises primarily due to three 
different causes: (1) natural variability in the 
climate system, (2) scientific uncertainty in 
predicting the response of the earth’s climate 
system to human-induced change, and (3) 
socioeconomic or scenario uncertainty in 
predicting future energy choices and hence 
emissions of heat-trapping gases.29 

It is important to note that scenario uncertainty is 
very different, and entirely distinct, from scientific 
uncertainty in at least two important ways. First, 
although scientific uncertainty can be reduced 
through coordinated observational programs and 
improved physical modeling, scenario uncertainty 
arises due to the fundamental inability to predict 
future changes in human behavior. It can be 
reduced only by the passing of time, as certain 
choices (such as depletion of a nonrenewable 
resource) can eliminate or render certain options 
less likely. Second, scientific uncertainty is often 
characterized by a normal distribution, where 
the mean value is more likely than the outliers. 
However, scenario uncertainty hinges primarily 
on whether or not the primary emitters of heat-
trapping gases, including traditionally large 
emitters such as the United States as well as nations 
with rapidly growing contributions such as India 
and China, will enact binding legislation to reduce 
their emissions or not. If they do enact legislation, 
then the lower emission scenarios become more 
probable. If they do not, then the higher scenarios 
become more probable. The longer such action 
is delayed, the less likely it becomes to achieve 
a lower scenario because of the emissions that 
continue to accumulate in the atmosphere. Hence, 
scenario uncertainty cannot be considered to have 
a normal distribution. Rather, the consequences of 
a lower versus a higher emissions scenario must be 
considered independently to isolate the role that 
human choices are likely to play in determining 
future impacts.

Figure 4 illustrates how, over timescales of years 
to several decades, natural chaotic variability is 
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the most important source of uncertainty. By 
mid-century, scientific or model uncertainty is 
the largest contributor to the range in projected 
temperature and precipitation change. By the 
end of the century, scenario uncertainty is most 
important for temperature projections, while 
model uncertainty continues as the dominant 
source of uncertainty in precipitation. This is 
consistent with the results of the projections 
discussed in this report, where there is a significant 
difference between the changes projected under 
higher versus lower scenarios for temperature-
based and heavy precipitation indicators, but 
little difference for mean precipitation-based 
indicators.

The first source of uncertainty can be addressed by 
always averaging or otherwise sampling from the 
statistical distribution of future projections over 
a climatological period – typically, 20 to 30 years. 
In other words, the average winter temperature 
should be averaged over several decades, as should 
the coldest day of the year. No time stamp more 
precise than 20 to 30 years should ever be assigned 
to any future projection. In this report and 
accompanying data files, simulations are always 
averaged over multidecadal, climatological time 
periods: historical (1981-2010), near-term (2020-
2039), mid-century (2040-2059) and end of 
century (2080-2099).

Figure 4. Percentage of uncertainty in future temperature projections one decade in the future (top row), four 
decades in the future (middle row) and nine decades in the future (bottom row) that can be attributed to natural 
variability (left column), model uncertainty (center column), and scenario uncertainty (right column). Source: Hawkins 
& Sutton, 2009.
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The second source of uncertainty, model or 
scientific uncertainty, can be addressed by using 
multiple global climate models to simulate 
the response of the climate system to human-
induced change (here, nine newer CMIP5 and 
four older CMIP3 models). As noted above, the 
climate models used here cover a range of climate 
sensitivity; they also cover an even wider range of 
precipitation projections, particularly at the local 
to regional scale. 

Again, although no model is perfect, most models 
are useful. Only models that demonstratively 
fail to reproduce the basic features of large-scale 
climate dynamics (e.g., the jet stream or El Niño) 
should be eliminated from consideration. Multiple 
studies have convincingly demonstrated that the 
average of an ensemble of simulations from a range 
of climate models (even ones of varied ability) 
is generally closer to reality than the simulations 
from one individual model--even one deemed 
“good” when evaluated on its performance over 
a given region.30, 31 Hence, wherever possible, 
impacts should be summarized in terms of the 
values resulting from multiple climate models, 
while uncertainty estimates can be derived from 
the range or variance in model projections. 
This is why most plots in this report show both 
multimodel mean values as well as a range of 
uncertainty around each value.

The third and final primary source of uncertainty 
in future projections can be addressed through 
generating climate projections for multiple futures: 
for example, a “higher emissions” future in which 
the world continues to depend on fossil fuels as the 
primary energy source (SRES A1FI or RCP 8.5), 
as compared to a “lower emissions” future focusing 
on sustainability and conservation (SRES B1 or 
RCP 4.5). 

Over the next two to three decades, projections 
can be averaged across scenarios, because there is 
no significant difference between scenarios over 
that time frame due to the inertia of the climate 
system in responding to changes in heat-trapping 
gas levels in the atmosphere.32 Past mid-century, 
however, projections should never be averaged 
across scenarios; rather, the difference in impacts 
resulting from a higher as compared to a lower 
scenario should always be clearly delineated. That 
is why, in this report, future projections are always 
summarized in terms of what is expected for each 
scenario individually.
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Appendix
List of Bar Graphs for  
All Climate Indicators 
All temperature values in ˚F, all precipitation values in inches

TEMPERATURE INDICATORS 

Annual – Seasonal Temperature 
Indicators:  

Maximum Temperatures
•	 Winter Maximum Temperature

•	 Winter Maximum Temperature Change

•	 Spring Maximum Temperature

•	 Spring Maximum Temperature Change

•	 Summer Maximum Temperature

•	 Summer Maximum Temperature Change

•	 Fall Maximum Temperature

•	 Fall Maximum Temperature Change

•	 Annual Maximum Temperature 

•	 Annual Maximum Temperature Change 

Minimum Temperatures
•	 Winter Minimum Temperature 

•	 Winter Minimum Temperature Change

•	 Spring Minimum Temperature

•	 Spring Minimum Temperature Change

•	 Summer Minimum Temperature 

•	 Summer Minimum Temperature Change

•	 Fall Minimum Temperature 

•	 Fall Minimum Temperature Change

•	 Annual Minimum Temperature 

•	 Annual Minimum Temperature Change 

Average Temperatures
•	 Winter Average Temperature 

•	 Winter Average Temperature Change

•	 Spring Average Temperature

•	 Spring Average Temperature Change

•	 Summer Average Temperature 

•	 Summer Average Temperature Change

•	 Fall Average Temperature 

•	 Fall Average Temperature Change

•	 Annual Average Temperature 

•	 Annual Average Temperature Change 

Temperature Range
•	 Winter Temperature Range

•	 Spring Temperature Range

•	 Summer Temperature Range

•	 Fall Temperature Range

•	 Annual Temperature Range

Standard Deviation of Temperature
•	 Standard Deviation of Winter Maximum Temperature

•	 Standard Deviation of Spring Maximum Temperature

•	 Standard Deviation of Summer Maximum Temperature

•	 Standard Deviation of Fall Maximum Temperature

•	 Standard Deviation of Annual Maximum Temperature

•	 Standard Deviation of Winter Minimum Temperature

•	 Standard Deviation of Spring Minimum Temperature

•	 Standard Deviation of Summer Minimum Temperature

•	 Standard Deviation of Fall Minimum Temperature

•	 Standard Deviation of Annual Minimum Temperature
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Other Temperature Indicators: 
Temperature Extremes
•	 Nights with Minimum Temperatures < 20˚F

•	 Changes in Nights with Minimum Temperatures < 20˚F

•	 Nights with Minimum Temperatures < 32˚F

•	 Changes in Nights with Minimum Temperatures < 32˚F

•	 Days with Maximum Temperatures > 90˚F

•	 Changes in Days with Maximum Temperatures > 90˚F

•	 Days with Maximum Temperatures > 95˚F

•	 Days with Maximum Temperatures > 100F

•	 Days with Maximum Temperatures > 105˚F

•	 Days with Maximum Temperatures > 110˚F

•	 Nights with Minimum Temperatures > 80˚F

•	 Nights with Minimum Temperatures > 85˚F

•	 Nights with Minimum Temperatures > 90˚F

•	 Number of 4+ Day Heat Waves per Year

•	 Longest Sequence of Days with Maximum Temperatures 
> 90˚F

•	 Longest Sequence of Days with Maximum Temperatures 
> 95˚F

•	 Longest Sequence of Days with Maximum Temperatures 
> 100˚F

Growing Season
•	 Date of Last Frost in Spring

•	 Change in Date of Last Spring Frost (days)

•	 Date of First Frost in Fall

•	 Change in Date of First Frost in Fall (days)

Energy-Related Temperature Indicators
•	 Mean Annual Cooling Degree-Days

•	 Mean Annual Heating Degree-Days

Temperature Extreme Percentiles
•	 Nights with Minimum Temperatures < Historic 1-in-100 

Coldest (1 percentile)

•	 Nights with Minimum Temperatures < Historic 1-in-20 
Coldest (5th percentile)

•	 Days with Maximum Temperatures > Historic 1-in-20 
Hottest (95th percentile)

•	 Days with Maximum Temperatures > Historic 1-in-100 
Hottest (99th percentile)

PRECIPITATION INDICATORS

Annual – Seasonal  
Precipitation Indicators: 
Average Precipitation
•	 Winter Precipitation (inches)

•	 Winter Precipitation Change (%)

•	 Spring Precipitation (inches)

•	 Spring Precipitation Change (%)

•	 Summer Precipitation (inches)

•	 Summer Precipitation Change (%)

•	 Fall Precipitation (inches)

•	 Fall Precipitation Change (%)

•	 Annual Precipitation (inches)

•	 Annual Precipitation Change (%)

3-Month Precipitation Change
•	 January-March 3-Month Precipitation Change (%)

•	 February-April 3-Month Precipitation Change (%)

•	 March-May 3-Month Precipitation Change (%)

•	 April-June 3-Month Precipitation Change (%)

•	 May-July 3-Month Precipitation Change (%)

•	 June-August 3-Month Precipitation Change (%)

•	 July-September 3-Month Precipitation Change (%)

•	 August-October 3-Month Precipitation Change (%)

•	 September-November 3-Month Precipitation Change (%)

•	 October-December 3-Month Precipitation Change (%)

•	 November-January 3-Month Precipitation Change (%)

•	 December-February 3-Month Precipitation Change (%)

6- and 12-Month Precipitation Change
•	 January-June 6-Month Precipitation Change (%)

•	 February-July 6-Month Precipitation Change (%)

•	 March-August 6-Month Precipitation Change (%)
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•	 April-September 6-Month Precipitation Change (%)

•	 May-October 6-Month Precipitation Change (%)

•	 June-November 6-Month Precipitation Change (%)

•	 July-December 6-Month Precipitation Change (%)

•	 August-January 6-Month Precipitation Change (%)

•	 September-February 6-Month Precipitation Change (%)

•	 October-March 6-Month Precipitation Change (%)

•	 November-April 6-Month Precipitation Change (%)

•	 December-May 6-Month Precipitation Change (%)

•	 January-December 12-Month Precipitation Change (%)

Other Precipitation Indicators:
Dry Days
•	 Annual Average Dry Days per Year

•	 Change in Dry Days per Year (%)

•	 Longest Dry Period of the Year (days)

•	 Change in Longest Dry Period (%)

Precipitation Indices
•	 Precipitation Intensity (inches/day)

•	 Change in Precipitation Intensity (%)

•	 Standardized Precipitation Index

Extreme Precipitation
•	 Days per Year > 0.5”

•	 Days per Year > 1”

•	 Days per Year > 2”

•	 Days per Year > 3”

•	 Days per Year > 4”

•	 Days per Year > 5”

•	 Days per Year > 6”

•	 Days per Year > 7”

•	 Days per Year > 8”

•	 Precipitation on Wettest 1 Day/Year (inches)

•	 Precipitation on Wettest 5 Days/Year (inches)

•	 Precipitation on Wettest 2 Weeks/Year (inches)

•	 Precipitation on Wettest 1 Day in 2 Years (inches)

•	 Precipitation on Wettest 5 Days in 2 Years (inches)

•	 Precipitation on Wettest Two Weeks in 2 Years (inches)

•	 Precipitation on Wettest 1 Day in 10 Years (inches)

•	 Precipitation on Wettest 5 Days in 10 Years (inches)

•	 Precipitation on Wettest Two Weeks in 10 Years (inches)

•	 Days per Year > Historical 2-day Maximum

•	 Days per Year > Historical 4-day Maximum

•	 Days per Year > Historical 7-day Maximum

•	 Percentage of Precipitation Falling as Rain vs. Snow (%)

HUMIDITY HYBRID INDICATORS
Dewpoint Indicators
•	 Winter Dewpoint Temperature (˚F)

•	 Winter Dewpoint Temperature Change (˚F)

•	 Spring Dewpoint Temperature (˚F)

•	 Spring Dewpoint Temperature Change (˚F)

•	 Summer Dewpoint Temperature (˚F)

•	 Summer Dewpoint Temperature Change (˚F)

•	 Fall Dewpoint Temperature (˚F)

•	 Fall Dewpoint Temperature Change (˚F)

•	 Annual Dewpoint Temperature (˚F)

•	 Annual Dewpoint Temperature Change (˚F)

Relative Humidity
•	 Average Winter Relative Humidity (%)

•	 Change in Winter Relative Humidity (%)

•	 Average Spring Relative Humidity (%)

•	 Change in Spring Relative Humidity (%)

•	 Average Summer Relative Humidity (%)

•	 Change in Summer Relative Humidity (%)

•	 Average Fall Relative Humidity (%)

•	 Change in Fall Relative Humidity (%)

•	 Average Annual Relative Humidity (%)

•	 Change in Annual Relative Humidity (%)
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Heat Indices
•	 Summer Heat Index (˚F)

•	 Change in Summer Heat Index (˚F)

•	 Number of Hot Dry Days per Year

•	 Number of Cool Wet Days per Year

Potential Evapotranspiration
•	 Winter Potential Evapotranspiration (mm)

•	 Spring Potential Evapotranspiration (mm)

•	 Summer Potential Evapotranspiration (mm)

•	 Fall Potential Evapotranspiration (mm)

•	 Annual Potential Evapotranspiration (mm)
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